পিথাগোরাসের উপপাদ্য (নবম অধ্যায়)

অষ্টম শ্রেণি (মাধ্যমিক) - গণিত - | NCTB BOOK

খ্রিস্টপূর্ব ষষ্ঠ শতাব্দীর গ্রিক দার্শনিক পিথাগোরাস সমকোণী ত্রিভুজের একটি বিশেষ বৈশিষ্ট্য নিরূপণ করেন। সমকোণী ত্রিভুজের এ বৈশিষ্ট্য পিথাগোরাসের বৈশিষ্ট্য বলে পরিচিত। বলা হয় পিথাগোরাসের জন্মের আগে মিসরীয় ও ব্যবিলনীয় যুগেও সমকোণী ত্রিভুজের এ বৈশিষ্ট্যের ব্যবহার ছিল। এ অধ্যায়ে আমরা সমকোণী ত্রিভুজের এ বৈশিষ্ট্য নিয়ে আলোচনা করব। সমকোণী ত্রিভুজের বাহুগুলো বিশেষ নামে পরিচিত। সমকোণের বিপরীত বাহু অতিভুজ এবং সমকোণ সংলগ্ন বাহুদ্বয় যথাক্রমে ভূমি ও উন্নতি। বর্তমান অধ্যায়ে এ তিনটি বাহুর দৈর্ঘ্যের মধ্যে যে সম্পর্ক রয়েছে সে বিষয়ে আলোচনা করা হবে।

অধ্যায় শেষে শিক্ষার্থীরা-

➤ পিথাগোরাসের উপপাদ্য যাচাই ও প্রমাণ করতে পারবে।

➤ ত্রিভুজের তিনটি বাহুর দৈর্ঘ্য দেওয়া থাকলে ত্রিভুজটি সমকোণী কি না যাচাই করতে পারবে।

➤ পিথাগোরাসের সূত্র ব্যবহার করে সমস্যা সমাধান করতে পারবে।

common.content_added_and_updated_by

সমকোণী ত্রিভুজ (৯.১)

চিত্রে, ABC একটি সমকোণী ত্রিভুজ, এর ∠ACB কোণটি সমকোণ। সুতরাং AB ত্রিভুজটির অতিভুজ। চিত্রে ত্রিভুজটির বাহুগুলো a, b, c দ্বারা নির্দেশ করি।

কাজ :

১। একটি সমকোণ আঁক এবং এর বাহু দুইটির উপর যথাক্রমে 3 সে.মি. ও 4 সে.মি. দূরত্বে দুইটি বিন্দু চিহ্নিত কর। বিন্দু দুইটি যোগ করে একটি সমকোণী ত্রিভুজ আঁক। ত্রিভুজটির অতিভুজের দৈর্ঘ্য পরিমাপ কর। দৈর্ঘ্য 5 সে.মি. হয়েছে কি?

লক্ষ কর, 32 + 42 52 অর্থাৎ দুই বাহুর দৈর্ঘ্য পরিমাপের বর্গের যোগফল অতিভুজের পরিমাপের বর্গের সমান।

সুতরাং a,b,c বাহু দ্বারা নির্দেশিত ত্রিভুজের ক্ষেত্রে c2 = a2 + b2 হবে। এটা পিথাগোরাসের উপপাদ্যের মূল প্রতিপাদ্য। এই উপপাদ্যটি বিভিন্নভাবে প্রমাণ করা হয়েছে । এখানে কয়েকটি সহজ প্রমাণ দেওয়া হলো।

common.content_added_and_updated_by

পিথাগোরাসের উপপাদ্য (৯.২)

একটি সমকোণী ত্রিভুজের অতিভুজের উপর অঙ্কিত বর্গক্ষেত্র অপর দুই বাহুর উপর অঙ্কিত বর্গক্ষেত্রদ্বয়ের সমষ্টির সমান।

(দুইটি সমকোণী ত্রিভুজের সাহায্যে)

বিশেষ নির্বচন : মনে করি, ABC সমকোণী ত্রিভুজের ∠B = 90°

অঙ্কন : BC কে D পর্যন্ত বর্ধিত করি, যেন CD = AB = c হয়।

D বিন্দুতে বর্ধিত BC এর উপর DE লম্ব আঁকি, যেন DE = BC = a হয়। C, E ও A, E যোগ করি।

প্ৰমাণ :

ধাপযথার্থতা

(১) ∠ABC ও ACDE এ AB = CD = c, BC = DE = a

       এবং অন্তর্ভুক্ত ∠ABC = অন্তর্ভুক্ত ∠CDE

       সুতরাং, ∆ABC ≅ ∆CDE

       ∴ AC = CE = b এবং ∠BAC = ∠ECD

(২) আবার, AB ⊥ BD এবং ED ⊥ BD বলে AB || ED 

       সুতরাং, ABDE একটি ট্রাপিজিয়াম।

(৩) তদুপরি, ∠ACB + ∠BAC = ∠ACB + ∠ECD = এক সমকোণ।

       ∴ ∠ACE = এক সমকোণ। ∴ ∆ACE সমকোণী ত্রিভুজ।

       এখন ABDE ট্রাপিজিয়ামক্ষেত্রের ক্ষেত্রফল

= ( ∆ ক্ষেত্র ABC +  ∆ ক্ষেত্র CDE +  ∆ ক্ষেত্র ACE)

    বা, 12BDab+DE=12ac+12ac+12b2

    বা, 12BC+CDAB+DE=12ac+12ac+12b2

    বা, (a + c) (a + c) = 2ac + b2   [2 দ্বারা গুণ করে]

    বা, a2 + 2ac + c2 = 2ac + b2

    ∴ b2 = c2 + a2 (প্রমাণিত)

[প্রত্যেকে সমকোণ]

 

 

[বাহু-কোণ-বাহু উপপাদ্য]

 

 

∴ ∠BAC = ∠ECD

 

 

 

[ট্রাপিজিয়াম ক্ষেত্রের ক্ষেত্রফল =12 সমান্তরাল বাহুদ্বয়ের যোগফল x সমান্তরাল বাহুদ্বয়ের মধ্যবর্তী দূরত্ব]

 

 

 

পিথাগোরাসের উপপাদ্যের বিকল্প প্রমাণ

(সদৃশকোণী ত্রিভুজের সাহায্যে)

বিশেষ নির্বচন : মনে করি, ABC সমকোণী ত্রিভুজের ZC = 90° এবং অতিভুজ AB = C, BC = a, AC = b প্রমাণ করতে হবে যে, AB2 = AC2 + BC2

অর্থাৎ c2 = a2 + b2

অঙ্কন : C বিন্দু থেকে অতিভুজ AB এর উপর লম্ব CH অঙ্কন করি। AB অতিভুজ H বিন্দুতে d ও e অংশে বিভক্ত হলো। 

প্ৰমাণ :

ধাপযথার্থতা

∆ВСН ও ∆АВС এ

∠BHC = ∠ACB এবং

∠CBH = ∠ABC

(১) ∴ ∆CBH ও ∆ABC সদৃশ।

       ∴ BCAB+BHBC 

       ∴ ac+ea … …(1)

(২) অনুরূপভাবে ∆ACH ও ∆ABC সদৃশ৷

       ∴ bc=db … … (2)

(৩) অনুপাত দুইটি থেকে পাই,

       a2 = c × e, b2 = c × d

       অতএব, a2 + b2 = c × e + c × d

                                  = c (e + d) = c × e = c2

∴ c 2 = a2 + b2 [প্রমাণিত]

প্রত্যেকেই সমকোণ

সাধারণ কোণ

 

 

 

 

 

 

 

[(i) উভয় ত্রিভুজ সমকোণী 

(ii) ZA কোণ সাধারণ]

 

      ∵ c = e + d

 

পিথাগোরাসের উপপাদ্যের বিকল্প প্রমাণ

(বীজগণিতের সাহায্যে)

পিথাগোরাসের উপপাদ্য বীজগণিতের সাহায্যে সহজেই প্রমাণ করা যায়।

বিশেষ নির্বচন : মনে করি, একটি সমকোণী ত্রিভুজের
অতিভুজ c এবং a, b যথাক্রমে অন্য দুই বাহু।

প্রমাণ করতে হবে, c2 = a2 + b2

অঙ্কন : প্রদত্ত ত্রিভুজটির সমান করে চারটি ত্রিভুজ চিত্রে প্রদর্শিত উপায়ে আঁকি।

প্ৰমাণ :

ধাপযথার্থতা

(১) অঙ্কিত বড় ক্ষেত্রটি বর্গক্ষেত্র।

এর ক্ষেত্রফল (a + b)2

(২) ছোট চতুৰ্ভুজ ক্ষেত্রটি বর্গক্ষেত্র।

এর ক্ষেত্রফল c2

(৩) অঙ্কনানুসারে, বড় বর্গক্ষেত্রের ক্ষেত্রফল চারটি ত্রিভুজক্ষেত্র ও ছোট বর্গক্ষেত্রের ক্ষেত্রফলের সমষ্টির সমান।

অর্থাৎ, a+b2=4×12×a×b×c2

বা, a2 + 2ab + b2 = 2ab+c2

∴ c2 = a2 + b2 (প্রমাণিত)

[বাহুগুলোর প্রত্যেকটির দৈর্ঘ্য a+b এবং কোণগুলো সমকোণ]

 

[বাহুগুলোর প্রত্যেকটির দৈর্ঘ্য c]

 

 

 

 

 

কাজ : ১। (a–b)2 এর বিস্তৃতির সাহায্যে পিথাগোরাসের উপপাদ্যটি প্রমাণ কর।
common.content_added_and_updated_by

পিথাগোরাসের উপপাদ্যের বিপরীত উপপাদ্য (৯.৩)

যদি কোনো ত্রিভুজের একটি বাহুর উপর অঙ্কিত বর্গক্ষেত্র অপর দুই বাহুর উপর অঙ্কিত বর্গক্ষেত্রদ্বয়ের সমষ্টির সমান হয়, তবে শেষোক্ত বাহুদ্বয়ের অন্তর্ভুক্ত কোণটি সমকোণ হবে।

বিশেষ নির্বচন : মনে করি, ∆ABC এর AB2 = AC2 + BC2 প্রমাণ করতে হবে যে, ∠C = এক সমকোণ।

অঙ্কন : এমন একটি ত্রিভুজ DEF আঁকি, যেন ∠F এক সমকোণ, EF = BC এবং DF = AC হয়।

প্ৰমাণ :

ধাপযথার্থতা

(১) DE2 = EF2 + DF2

              = BC2 + AC2 = AB2

∴ DE = AB

এখন ∆ABC ও DEF এ BC = EF, AC = DF এবং AB = DE.

∴ ∆ABC = ∆DEF  ∴ ∠C = ∠F

∴ ∠C = এক সমকোণ।

                                   [প্রমাণিত]

[কারণ ∆DEF এ ∠F এক সমকোণ]

[কল্পনা]

 

[বাহু-বাহু-বাহু সর্বসমতা]

[∵ ∠F এক সমকোণ]

common.content_added_and_updated_by

অনুশীলনী ৯

common.please_contribute_to_add_content_into অনুশীলনী ৯.
Content

# বহুনির্বাচনী প্রশ্ন

টপ রেটেড অ্যাপ

স্যাট অ্যাকাডেমী অ্যাপ

আমাদের অল-ইন-ওয়ান মোবাইল অ্যাপের মাধ্যমে সীমাহীন শেখার সুযোগ উপভোগ করুন।

ভিডিও
লাইভ ক্লাস
এক্সাম
ডাউনলোড করুন
Promotion